Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Cell ; 187(3): 596-608.e17, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38194966

ABSTRACT

BA.2.86, a recently identified descendant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.2 sublineage, contains ∼35 mutations in the spike (S) protein and spreads in multiple countries. Here, we investigated whether the virus exhibits altered biological traits, focusing on S protein-driven viral entry. Employing pseudotyped particles, we show that BA.2.86, unlike other Omicron sublineages, enters Calu-3 lung cells with high efficiency and in a serine- but not cysteine-protease-dependent manner. Robust lung cell infection was confirmed with authentic BA.2.86, but the virus exhibited low specific infectivity. Further, BA.2.86 was highly resistant against all therapeutic antibodies tested, efficiently evading neutralization by antibodies induced by non-adapted vaccines. In contrast, BA.2.86 and the currently circulating EG.5.1 sublineage were appreciably neutralized by antibodies induced by the XBB.1.5-adapted vaccine. Collectively, BA.2.86 has regained a trait characteristic of early SARS-CoV-2 lineages, robust lung cell entry, and evades neutralizing antibodies. However, BA.2.86 exhibits low specific infectivity, which might limit transmissibility.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , SARS-CoV-2 , Humans , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Caspases/metabolism , COVID-19/immunology , COVID-19/virology , Lung/virology , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Virus Internalization , Spike Glycoprotein, Coronavirus/genetics
2.
Virol J ; 20(1): 257, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37940989

ABSTRACT

BACKGROUND: Intrinsic fitness costs are likely to have guided the selection of lineage-determining mutations during emergence of variants of SARS-CoV-2. Whereas changes in receptor affinity and antibody neutralization have been thoroughly mapped for individual mutations in spike, their influence on intrinsic replicative fitness remains understudied. METHODS: We analyzed mutations in immunodominant spike epitope E484 that became temporarily fixed over the pandemic. We engineered the resulting immune escape mutations E484K, -A, and -Q in recombinant SARS-CoV-2. We characterized viral replication, entry, and competitive fitness with and without immune serum from humans with defined exposure/vaccination history and hamsters monospecifically infected with the E484K variant. We additionally engineered a virus containing the Omicron signature mutations N501Y and Q498R that were predicted to epistatically enhance receptor binding. RESULTS: Multistep growth kinetics in Vero-, Calu-3, and NCI-H1299 were identical between viruses. Synchronized entry experiments based on cold absorption and temperature shift identified only an insignificant trend toward faster entry of the E484K variant. Competitive passage experiments revealed clear replicative fitness differences. In absence of immune serum, E484A and E484Q, but not E484K, were replaced by wildtype (WT) in competition assays. In presence of immune serum, all three mutants outcompeted WT. Decreased E484A fitness levels were over-compensated for by N501Y and Q498R, identifying a putative Omicron founder background that exceeds the intrinsic and effective fitness of WT and matches that of E484K. Critically, the E484A/Q498R/N501Y mutant and E484K have equal fitness also in presence of pre-Omicron vaccinee serum, whereas the fitness gain by E484K is lost in the presence of serum raised against the E484K variant in hamsters. CONCLUSIONS: The emergence of E484A and E484Q prior to widespread population immunity may have been limited by fitness costs. In populations already exposed to the early immune escape epitope E484K, the Omicron founder background may have provided a basis for alternative immune escape evolution via E484A. Studies of major antigenic epitope changes with and without their epistatic context help reconstruct the sequential adjustments of intrinsic fitness versus neutralization escape during the evolution of major SARS-CoV-2 variants in an increasingly immune human population.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Humans , Epitopes/genetics , SARS-CoV-2/genetics , Mutation , Immune Sera , Immunodominant Epitopes , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing
3.
Article in English | MEDLINE | ID: mdl-37812147

ABSTRACT

Durum wheat cultivars with varying abilities to accumulate cadmium were grown and treated in the field with a glyphosate-containing herbicide at different stages of maturity to produce grain with higher and lower concentrations of cadmium (0.066-0.214 mg/kg) and glyphosate (0.474-0.874 mg/kg). The grain was milled, and fractions were analysed for cadmium and glyphosate. The highest concentrations for both cadmium and glyphosate were associated with bran and shorts, although the percentage of total cadmium mass in bran (23-25%) was less than glyphosate (38%). The preparation of dried pasta from semolina and flour milling fractions reduced concentrations by a factor of 1.8 for glyphosate and 1.4 for cadmium. Dried pasta was cooked and analysed along with the cooking water for cadmium and glyphosate at seven-time points from 0 to 15 min. Concentrations of glyphosate in cooked pasta decreased significantly with cooking time; no decrease was observed for cadmium concentrations. Analysis of cooking water demonstrated that glyphosate migrated from pasta to the cooking water. After 15 min of cooking, approximately 73% of the total glyphosate mass had transferred from pasta to cooking water. Over the same time period, only 5% of the total cadmium mass had transferred from pasta to cooking water.


Subject(s)
Cadmium , Triticum , Cadmium/analysis , Cooking , Flour/analysis , Water , Glyphosate
4.
PLoS Pathog ; 19(9): e1011657, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37747932

ABSTRACT

Inhibitors of bromodomain and extra-terminal proteins (iBETs), including JQ-1, have been suggested as potential prophylactics against SARS-CoV-2 infection. However, molecular mechanisms underlying JQ-1-mediated antiviral activity and its susceptibility to viral subversion remain incompletely understood. Pretreatment of cells with iBETs inhibited infection by SARS-CoV-2 variants and SARS-CoV, but not MERS-CoV. The antiviral activity manifested itself by reduced reporter expression of recombinant viruses, and reduced viral RNA quantities and infectious titers in the culture supernatant. While we confirmed JQ-1-mediated downregulation of expression of angiotensin-converting enzyme 2 (ACE2) and interferon-stimulated genes (ISGs), multi-omics analysis addressing the chromatin accessibility, transcriptome and proteome uncovered induction of an antiviral nuclear factor erythroid 2-related factor 2 (NRF-2)-mediated cytoprotective response as an additional mechanism through which JQ-1 inhibits SARS-CoV-2 replication. Pharmacological inhibition of NRF-2, and knockdown of NRF-2 and its target genes reduced JQ-1-mediated inhibition of SARS-CoV-2 replication. Serial passaging of SARS-CoV-2 in the presence of JQ-1 resulted in predominance of ORF6-deficient variant, which exhibited resistance to JQ-1 and increased sensitivity to exogenously administered type I interferon (IFN-I), suggesting a minimised need for SARS-CoV-2 ORF6-mediated repression of IFN signalling in the presence of JQ-1. Importantly, JQ-1 exhibited a transient antiviral activity when administered prophylactically in human airway bronchial epithelial cells (hBAECs), which was gradually subverted by SARS-CoV-2, and no antiviral activity when administered therapeutically following an established infection. We propose that JQ-1 exerts pleiotropic effects that collectively induce an antiviral state in the host, which is ultimately nullified by SARS-CoV-2 infection, raising questions about the clinical suitability of the iBETs in the context of COVID-19.


Subject(s)
COVID-19 , Interferon Type I , Humans , SARS-CoV-2/metabolism , Interferon Type I/pharmacology , Viral Proteins/metabolism , Antiviral Agents/pharmacology
5.
Mol Psychiatry ; 28(10): 4363-4373, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37644174

ABSTRACT

Converging evidence suggests that schizophrenia (SZ) with primary, enduring negative symptoms (i.e., Deficit SZ (DSZ)) represents a distinct entity within the SZ spectrum while the neurobiological underpinnings remain undetermined. In the largest dataset of DSZ and Non-Deficit (NDSZ), we conducted a meta-analysis of data from 1560 individuals (168 DSZ, 373 NDSZ, 1019 Healthy Controls (HC)) and a mega-analysis of a subsampled data from 944 individuals (115 DSZ, 254 NDSZ, 575 HC) collected across 9 worldwide research centers of the ENIGMA SZ Working Group (8 in the mega-analysis), to clarify whether they differ in terms of cortical morphology. In the meta-analysis, sites computed effect sizes for differences in cortical thickness and surface area between SZ and control groups using a harmonized pipeline. In the mega-analysis, cortical values of individuals with schizophrenia and control participants were analyzed across sites using mixed-model ANCOVAs. The meta-analysis of cortical thickness showed a converging pattern of widespread thinner cortex in fronto-parietal regions of the left hemisphere in both DSZ and NDSZ, when compared to HC. However, DSZ have more pronounced thickness abnormalities than NDSZ, mostly involving the right fronto-parietal cortices. As for surface area, NDSZ showed differences in fronto-parietal-temporo-occipital cortices as compared to HC, and in temporo-occipital cortices as compared to DSZ. Although DSZ and NDSZ show widespread overlapping regions of thinner cortex as compared to HC, cortical thinning seems to better typify DSZ, being more extensive and bilateral, while surface area alterations are more evident in NDSZ. Our findings demonstrate for the first time that DSZ and NDSZ are characterized by different neuroimaging phenotypes, supporting a nosological distinction between DSZ and NDSZ and point toward the separate disease hypothesis.


Subject(s)
Schizophrenia , Humans , Schizophrenia/genetics , Magnetic Resonance Imaging , Neuroimaging , Parietal Lobe , Syndrome , Cerebral Cortex/diagnostic imaging
6.
Antibiotics (Basel) ; 12(7)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37508285

ABSTRACT

Salmonella enterica is a causative pathogen of Salmonellosis, a zoonosis causing global disease and financial losses every year. Pigs may be carriers of Salmonella and contribute to the spread to humans and food products. Salmonella may persist as biofilms. Biofilms are bacterial aggregates embedded in a self-produced matrix and are known to withstand disinfectants. We studied the effect of glutaraldehyde and peracetic acid, two active substances frequently used in disinfectant formulations in the pig industry, on representative biofilm-residing wild-type Salmonella collected from pig housings in the United Kingdom (UK). We screened biofilm production of strains using the microtiter plate (MTP) assay and Congo Red Coomassie Blue (CRCB) agar method. Previously published stainless-steel coupon (SSCA), polyvinylchloride coupon (PCA), and glass bead (GBA) assays were used for disinfection studies. The mean reduction in the tested wild-type strains met the criterion of ≥4 log10 CFU at a disinfectant concentration of 0.05% with SSCA and GBA, and 0.005% with PCA for peracetic acid, along with 0.5% for glutaraldehyde with all three assays on the mean. At these concentrations, both tested disinfectants are suitable for disinfection of pig housings against Salmonella. When evaluating the efficacy of disinfectants, biofilms should be included, as higher disinfectant concentrations are necessary compared to planktonic bacteria.

7.
Front Med (Lausanne) ; 10: 1179145, 2023.
Article in English | MEDLINE | ID: mdl-37425319

ABSTRACT

Objectives: Stethoscopes carry a significant risk for pathogen transmission. Here, the safe use and performance of a new, non-sterile, single-use stethoscope cover (SC), that is impermeable for pathogens, was investigated by different healthcare professionals (HCPs) in the postoperative care setting of an intensive care unit (ICU). Methods: Fifty-four patients underwent routine auscultations with the use of the SC (Stethoglove®, Stethoglove GmbH, Hamburg, Germany). The participating HCPs (n = 34) rated each auscultation with the SC on a 5-point Likert scale. The mean ratings of acoustic quality and the SC handling were defined as primary and secondary performance endpoint. Results: 534 auscultations with the SC were performed (average 15.7/user) on the lungs (36.1%), the abdomen (33.2%), the heart (28.8%), or other body-sites (1.9%). No adverse device-effects occurred. The acoustic quality was rated at 4.2 ± 0.7 (mean) with a total of 86.1% of all auscultations being rated at least as 4/5, and with no rating as below 2. The SC handling was rated at 3.7 ± 0.8 (mean) with a total of 96.4% of all auscultations being rated at least 3/5. Conclusion: Using a real-world setting, this study demonstrates that the SC can be safely and effectively used as cover for stethoscopes during auscultation. The SC may therefore represent a useful and easy-to-implement tool for preventing stethoscope-mediated infections.Study Registration: EUDAMED no. CIV-21-09-037762.

8.
Nat Commun ; 14(1): 3500, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37311762

ABSTRACT

The SARS-CoV-2 Omicron subvariants BA.1 and BA.2 exhibit reduced lung cell infection relative to previously circulating SARS-CoV-2 variants, which may account for their reduced pathogenicity. However, it is unclear whether lung cell infection by BA.5, which displaced these variants, remains attenuated. Here, we show that the spike (S) protein of BA.5 exhibits increased cleavage at the S1/S2 site and drives cell-cell fusion and lung cell entry with higher efficiency than its counterparts from BA.1 and BA.2. Increased lung cell entry depends on mutation H69Δ/V70Δ and is associated with efficient replication of BA.5 in cultured lung cells. Further, BA.5 replicates in the lungs of female Balb/c mice and the nasal cavity of female ferrets with much higher efficiency than BA.1. These results suggest that BA.5 has acquired the ability to efficiently infect lung cells, a prerequisite for causing severe disease, suggesting that evolution of Omicron subvariants can result in partial loss of attenuation.


Subject(s)
COVID-19 , Animals , Female , Mice , Ferrets , SARS-CoV-2 , Mice, Inbred BALB C , Lung
9.
Microorganisms ; 11(3)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36985334

ABSTRACT

Within the European Union, Salmonella is frequently reported in food and feed products. A major route of transmission is upon contact with contaminated surfaces. In nature, bacteria such as Salmonella are often encountered in biofilms, where they are protected against antibiotics and disinfectants. Therefore, the removal and inactivation of biofilms is essential to ensure hygienic conditions. Currently, recommendations for disinfectant usage are based on results of efficacy testing against planktonic bacteria. There are no biofilm-specific standards for the efficacy testing of disinfectants against Salmonella. Here, we assessed three models for disinfectant efficacy testing on Salmonella Typhimurium biofilms. Achievable bacterial counts per biofilm, repeatability, and intra-laboratory reproducibility were analyzed. Biofilms of two Salmonella strains were grown on different surfaces and treated with glutaraldehyde or peracetic acid. Disinfectant efficacy was compared with results for planktonic Salmonella. All methods resulted in highly repeatable cell numbers per biofilm, with one assay showing variations of less than 1 log10 CFU in all experiments for both strains tested. Disinfectant concentrations required to inactivate biofilms were higher compared to planktonic cells. Differences were found between the biofilm methods regarding maximal achievable cell numbers, repeatability, and intra-laboratory reproducibility of results, which may be used to identify the most appropriate method in relation to application context. Developing a standardized protocol for testing disinfectant efficacy on biofilms will help identify conditions that are effective against biofilms.

10.
NPJ Biofilms Microbiomes ; 8(1): 93, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36418316

ABSTRACT

The polysaccharide Bep is essential for in vitro biofilm formation of the opportunistic pathogen Burkholderia cenocepacia. We found that the Burkholderia diffusible signaling factor (BDSF) quorum sensing receptor RpfR is a negative regulator of the bep gene cluster in B. cenocepacia. An rpfR mutant formed wrinkled colonies, whereas additional mutations in the bep genes or known bep regulators like berA and berB restored the wild-type smooth colony morphology. We found that there is a good correlation between intracellular c-di-GMP levels and bep expression when the c-di-GMP level is increased or decreased through ectopic expression of a diguanylate cyclase or a c-di-GMP phosphodiesterase, respectively. However, when the intracellular c-di-GMP level is changed by site directed mutagenesis of the EAL or GGDEF domain of RpfR there is no correlation between intracellular c-di-GMP levels and bep expression. Except for rpfR, deletion mutants of all 25 c-di-GMP phosphodiesterase and diguanylate cyclase genes encoded by B. cenocepacia showed no change to berA and bep gene expression. Moreover, bacterial two-hybrid assays provided evidence that RpfR and BerB physically interact and give specificity to the regulation of the bep genes. We suggest a model where RpfR binds BerB at low c-di-GMP levels to sequester this RpoN-dependent activator to an RpfR/RpfF complex. If the c-di-GMP levels rise, possibly by the enzymatic action of RpfR, BerB binds c-di-GMP and is released from the RpfR/RpfF complex and associates with RpoN to activate transcription of berA, and the BerA protein subsequently activates transcription of the bep genes.


Subject(s)
Burkholderia cenocepacia , Burkholderia , Burkholderia cenocepacia/genetics , Burkholderia cenocepacia/metabolism , Quorum Sensing/genetics , Phosphoric Diester Hydrolases
11.
PLoS Biol ; 20(11): e3001871, 2022 11.
Article in English | MEDLINE | ID: mdl-36383605

ABSTRACT

Epidemiological data demonstrate that Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) Alpha and Delta are more transmissible, infectious, and pathogenic than previous variants. Phenotypic properties of VOC remain understudied. Here, we provide an extensive functional study of VOC Alpha replication and cell entry phenotypes assisted by reverse genetics, mutational mapping of spike in lentiviral pseudotypes, viral and cellular gene expression studies, and infectivity stability assays in an enhanced range of cell and epithelial culture models. In almost all models, VOC Alpha spread less or equally efficiently as ancestral (B.1) SARS-CoV-2. B.1. and VOC Alpha shared similar susceptibility to serum neutralization. Despite increased relative abundance of specific sgRNAs in the context of VOC Alpha infection, immune gene expression in infected cells did not differ between VOC Alpha and B.1. However, inferior spreading and entry efficiencies of VOC Alpha corresponded to lower abundance of proteolytically cleaved spike products presumably linked to the T716I mutation. In addition, we identified a bronchial cell line, NCI-H1299, which supported 24-fold increased growth of VOC Alpha and is to our knowledge the only cell line to recapitulate the fitness advantage of VOC Alpha compared to B.1. Interestingly, also VOC Delta showed a strong (595-fold) fitness advantage over B.1 in these cells. Comparative analysis of chimeric viruses expressing VOC Alpha spike in the backbone of B.1, and vice versa, showed that the specific replication phenotype of VOC Alpha in NCI-H1299 cells is largely determined by its spike protein. Despite undetectable ACE2 protein expression in NCI-H1299 cells, CRISPR/Cas9 knock-out and antibody-mediated blocking experiments revealed that multicycle spread of B.1 and VOC Alpha required ACE2 expression. Interestingly, entry of VOC Alpha, as opposed to B.1 virions, was largely unaffected by treatment with exogenous trypsin or saliva prior to infection, suggesting enhanced resistance of VOC Alpha spike to premature proteolytic cleavage in the extracellular environment of the human respiratory tract. This property may result in delayed degradation of VOC Alpha particle infectivity in conditions typical of mucosal fluids of the upper respiratory tract that may be recapitulated in NCI-H1299 cells closer than in highly ACE2-expressing cell lines and models. Our study highlights the importance of cell model evaluation and comparison for in-depth characterization of virus variant-specific phenotypes and uncovers a fine-tuned interrelationship between VOC Alpha- and host cell-specific determinants that may underlie the increased and prolonged virus shedding detected in patients infected with VOC Alpha.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2/genetics , Virus Shedding , Antibodies, Blocking
12.
Article in English | MEDLINE | ID: mdl-36223513

ABSTRACT

Cadmium (Cd) was measured in bulk exports of Canada Western Amber Durum collected from 1992-1993 to 2019-2020 shipping years. Cd concentrations decreased by more than a factor of two over this period, from the highest annual median concentration of 0.160 mg/kg in 2003-2004 to the most recent annual median of 0.070 mg/kg for 2019-2020. Over the same time period there was no trend in Cd concentrations in bulk exports of Canada Western Red Spring wheat. The decrease in durum Cd concentrations was correlated with the decrease in production of high Cd accumulating cultivars, demonstrating the success of the Canadian breeding programme at developing low Cd accumulating cultivars, the registration system and producer support in reducing the Cd content of Canada Western Amber Durum.


Subject(s)
Cadmium , Soil Pollutants , Cadmium/analysis , Canada , Triticum , Soil Pollutants/analysis
13.
Mol Syst Biol ; 18(8): e10961, 2022 08.
Article in English | MEDLINE | ID: mdl-35975552

ABSTRACT

Cell-intrinsic responses mounted in PBMCs during mild and severe COVID-19 differ quantitatively and qualitatively. Whether they are triggered by signals emitted by productively infected cells of the respiratory tract or result from physical interaction with virus particles remains unclear. Here, we analyzed susceptibility and expression profiles of PBMCs from healthy donors upon ex vivo exposure to SARS-CoV and SARS-CoV-2. In line with the absence of detectable ACE2 receptor expression, human PBMCs were refractory to productive infection. RT-PCR experiments and single-cell RNA sequencing revealed JAK/STAT-dependent induction of interferon-stimulated genes (ISGs) but not proinflammatory cytokines. This SARS-CoV-2-specific response was most pronounced in monocytes. SARS-CoV-2-RNA-positive monocytes displayed a lower ISG signature as compared to bystander cells of the identical culture. This suggests a preferential invasion of cells with a low ISG baseline profile or delivery of a SARS-CoV-2-specific sensing antagonist upon efficient particle internalization. Together, nonproductive physical interaction of PBMCs with SARS-CoV-2- and, to a much lesser extent, SARS-CoV particles stimulate JAK/STAT-dependent, monocyte-accentuated innate immune responses that resemble those detected in vivo in patients with mild COVID-19.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Humans , Immunity, Innate , Interferons , SARS-CoV-2
14.
Schizophr Bull Open ; 3(1): sgac040, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35903803

ABSTRACT

Objective: To examine the association between baseline alterations in grey matter volume (GMV) and clinical and functional outcomes in people at clinical high risk (CHR) for psychosis. Methods: 265 CHR individuals and 92 healthy controls were recruited as part of a prospective multi-center study. After a baseline assessment using magnetic resonance imaging (MRI), participants were followed for at least two years to determine clinical and functional outcomes, including transition to psychosis (according to the Comprehensive Assessment of an At Risk Mental State, CAARMS), level of functioning (according to the Global Assessment of Functioning), and symptomatic remission (according to the CAARMS). GMV was measured in selected cortical and subcortical regions of interest (ROI) based on previous studies (ie orbitofrontal gyrus, cingulate gyrus, gyrus rectus, inferior temporal gyrus, parahippocampal gyrus, striatum, and hippocampus). Using voxel-based morphometry, we analysed the relationship between GMV and clinical and functional outcomes. Results: Within the CHR sample, a poor functional outcome (GAF < 65) was associated with relatively lower GMV in the right striatum at baseline (P < .047 after Family Wise Error correction). There were no significant associations between baseline GMV and either subsequent remission or transition to psychosis. Conclusions: In CHR individuals, lower striatal GMV was associated with a poor level of overall functioning at follow-up. This finding was not related to effects of antipsychotic or antidepressant medication. The failure to replicate previous associations between GMV and later psychosis onset, despite studying a relatively large sample, is consistent with the findings of recent large-scale multi-center studies.

15.
Nanomaterials (Basel) ; 11(11)2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34835763

ABSTRACT

Bacterial adhesion and biofilm formation on surfaces are associated with persistent microbial contamination, biofouling, and the emergence of resistance, thus, calling for new strategies to impede bacterial surface colonization. Using ns-UV laser treatment (wavelength 248 nm and a pulse duration of 20 ns), laser-induced periodic surface structures (LIPSS) featuring different sub-micrometric periods ranging from ~210 to ~610 nm were processed on commercial poly(ethylene terephthalate) (PET) foils. Bacterial adhesion tests revealed that these nanorippled surfaces exhibit a repellence for E. coli that decisively depends on the spatial periods of the LIPSS with the strongest reduction (~91%) in cell adhesion observed for LIPSS periods of 214 nm. Although chemical and structural analyses indicated a moderate laser-induced surface oxidation, a significant influence on the bacterial adhesion was ruled out. Scanning electron microscopy and additional biofilm studies using a pili-deficient E. coli TG1 strain revealed the role of extracellular appendages in the bacterial repellence observed here.

16.
Eur Psychiatry ; 64(1): e69, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34730080

ABSTRACT

BACKGROUND: To determine the proportion of patients in symptomatic remission and recovery following a first-episode of psychosis (FEP). METHODS: A multistep literature search using the Web of Science database, Cochrane Central Register of Reviews, Ovid/PsychINFO, and trial registries from database inception to November 5, 2020, was performed. Cohort studies and randomized control trials (RCT) investigating the proportion of remission and recovery following a FEP were included. Two independent researchers searched, following PRISMA and MOOSE guidelines and using a PROSPERO protocol. We performed meta-analyses regarding the proportion of remission/recovery (symptomatic plus functional outcomes). Heterogeneity was measured employing Q statistics and I2 test. To identify potential predictors, meta-regression analyses were conducted, as well as qualitative reporting of studies included in a systematic review. Sensitivity analyses were performed regarding different times of follow-up and type of studies. RESULTS: One hundred articles (82 cohorts and 18 RCTs) were included in the meta-analysis. The pooled proportion of symptomatic remission was 54% (95%CI [30, 49-58]) over a mean follow-up period of 43.57 months (SD = 51.82) in 76 studies. After excluding RCT from the sample, the proportion of remission remained similar (55%). The pooled proportion of recovery was 32% (95%CI [27-36]) over a mean follow-up period of 71.85 months (SD = 73.54) in 40 studies. After excluding RCT from the sample, the recovery proportion remained the same. No significant effect of any sociodemographic or clinical predictor was found. CONCLUSIONS: Half of the patients are in symptomatic remission around 4 years after the FEP, while about a third show recovery after 5.5 years.


Subject(s)
Psychotic Disorders , Databases, Factual , Employment , Humans , Psychotic Disorders/therapy , Registries
17.
Nat Commun ; 12(1): 5324, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34493730

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) is enzootic in dromedary camels across the Middle East and Africa. Virus-induced pneumonia in humans results from animal contact, with a potential for limited onward transmission. Phenotypic changes have been suspected after a novel recombinant clade (lineage 5) caused large nosocomial outbreaks in Saudi Arabia and South Korea in 2016. However, there has been no functional assessment. Here we perform a comprehensive in vitro and ex vivo comparison of viruses from parental and recombinant virus lineages (lineage 3, n = 7; lineage 4, n = 8; lineage 5, n = 9 viruses) from Saudi Arabia, isolated immediately before and after the shift toward lineage 5. Replication of lineage 5 viruses is significantly increased. Transcriptional profiling finds reduced induction of immune genes IFNB1, CCL5, and IFNL1 in lung cells infected with lineage 5 strains. Phenotypic differences may be determined by IFN antagonism based on experiments using IFN receptor knock out and signaling inhibition. Additionally, lineage 5 is more resilient against IFN pre-treatment of Calu-3 cells (ca. 10-fold difference in replication). This phenotypic change associated with lineage 5 has remained undiscovered by viral sequence surveillance, but may be a relevant indicator of pandemic potential.


Subject(s)
Coronavirus Infections/virology , Middle East Respiratory Syndrome Coronavirus/genetics , Animals , Camelus , Cells, Cultured , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Genome, Viral , Humans , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Phylogeny , Recombination, Genetic , Republic of Korea/epidemiology , Saudi Arabia/epidemiology , Virus Replication
18.
Cell Physiol Biochem ; 55(4): 387-399, 2021 Jul 03.
Article in English | MEDLINE | ID: mdl-34214388

ABSTRACT

BACKGROUND/AIMS: The use of skin-derived stem cells and stem cells of other origins in regenerative medicine requires knowledge of stem cell fate after transplantation. In order to achieve non-invasive long-term imaging and tracking of transplanted stem cells in preclinical studies, a non-toxic, efficient labeling technique that does not alter stem cell characteristics must be used. Our aim was to investigate a method for such a long-term cell-compatible cell tracer using nanoparticles. METHODS: Nanotechnology, in particular the use of quantum dots (QDs), offers great advantages for this crucial requirement. In this study, we used nanocrystals coated with a specific target peptide that enables delivery into the cytoplasm of cells, resulting in an intense and stable fluorescent labeling. We analyzed the influence of biocompatible CdSe/ZnS-QDs on epidermal stem cells (EpiSCs) isolated from adult human skin. Thereby we analyzed on QD loading, cell proliferation including QD transfer to descendent daughter cells as well as the influence on the differentiation potential of stem cells after QD labeling. RESULTS: FACS analysis revealed a dose-dependent QD incorporation into the cells. Thereby, a high initial concentration of nanocrystals resulted in a more stable long-term labeling. QD labeled cells showed normal viability and unchanged ability to proliferate. The spread of QDs during cell division was monitored by time lapse microscopy and two modes of QD distribution could be observed. Daughter cells either received an equal amount of QDs after cell division, which led to a homogenously faded fluorescence signal, or there was an uneven transmission of QDs, which led to unchanged labeling of one cell and a complete loss of the fluorescence signal of the other cell. The spontaneous differentiation potential remained unaffected after QD exposure, since skin-derived EpiSCs showed an unchanged protein and gene expression profile. CONCLUSION: In summary, we can conclude that QDs offer a successful, non-invasive and efficient labeling technique for EpiSCs, which makes their in vitro and in vivo use in skin regeneration and wound healing models traceable. Nevertheless, the uneven transmission of QDs should not be disregarded and the extent and frequency should be investigated in further studies.


Subject(s)
Flow Cytometry , Quantum Dots/chemistry , Skin/cytology , Stem Cells/cytology , Humans
19.
Nat Commun ; 12(1): 3818, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34155207

ABSTRACT

Viruses manipulate cellular metabolism and macromolecule recycling processes like autophagy. Dysregulated metabolism might lead to excessive inflammatory and autoimmune responses as observed in severe and long COVID-19 patients. Here we show that SARS-CoV-2 modulates cellular metabolism and reduces autophagy. Accordingly, compound-driven induction of autophagy limits SARS-CoV-2 propagation. In detail, SARS-CoV-2-infected cells show accumulation of key metabolites, activation of autophagy inhibitors (AKT1, SKP2) and reduction of proteins responsible for autophagy initiation (AMPK, TSC2, ULK1), membrane nucleation, and phagophore formation (BECN1, VPS34, ATG14), as well as autophagosome-lysosome fusion (BECN1, ATG14 oligomers). Consequently, phagophore-incorporated autophagy markers LC3B-II and P62 accumulate, which we confirm in a hamster model and lung samples of COVID-19 patients. Single-nucleus and single-cell sequencing of patient-derived lung and mucosal samples show differential transcriptional regulation of autophagy and immune genes depending on cell type, disease duration, and SARS-CoV-2 replication levels. Targeting of autophagic pathways by exogenous administration of the polyamines spermidine and spermine, the selective AKT1 inhibitor MK-2206, and the BECN1-stabilizing anthelmintic drug niclosamide inhibit SARS-CoV-2 propagation in vitro with IC50 values of 136.7, 7.67, 0.11, and 0.13 µM, respectively. Autophagy-inducing compounds reduce SARS-CoV-2 propagation in primary human lung cells and intestinal organoids emphasizing their potential as treatment options against COVID-19.


Subject(s)
COVID-19/metabolism , COVID-19/virology , SARS-CoV-2/metabolism , Animals , Antinematodal Agents/pharmacology , Autophagosomes/metabolism , Autophagy , Autophagy-Related Proteins/metabolism , COVID-19/pathology , Cells, Cultured , Chlorocebus aethiops , Cricetinae , Disease Models, Animal , Humans , Lung/metabolism , Lung/pathology , Lung/virology , Metabolome , Niclosamide/pharmacology , Organoids , SARS-CoV-2/isolation & purification , Spermidine/pharmacology , Spermine/pharmacology , COVID-19 Drug Treatment
20.
Lancet Microbe ; 2(5): e210-e218, 2021 05.
Article in English | MEDLINE | ID: mdl-33969329

ABSTRACT

BACKGROUND: The COVID-19 agent, SARS-CoV-2, is conspecific with SARS-CoV, the causal agent of the severe acute respiratory syndrome epidemic in 2002-03. Although the viruses share a completely homologous repertoire of proteins and use the same cellular entry receptor, their transmission efficiencies and pathogenetic traits differ. We aimed to compare interferon antagonism by SARS-CoV and SARS-CoV-2. METHODS: For this functional study, we infected Vero E6 and Calu-3 cells with strains of SARS-CoV and SARS-CoV-2. We studied differences in cell line-specific replication (Vero E6 vs Calu-3 cells) and analysed these differences in relation to TMPRSS2-dependent cell entry based on inhibition with the drug camostat mesilate. We evaluated viral sensitivity towards type I interferon treatment and assessed cytokine induction and type I interferon signalling in the host cells by RT-PCR and analysis of transcription factor activation and nuclear translocation. Based on reverse genetic engineering of SARS-CoV, we investigated the contribution of open reading frame 6 (ORF6) to the observed phenotypic differences in interferon signalling, because ORF6 encodes an interferon signalling antagonist. We did a luciferase-based interferon-stimulated response element promotor activation assay to evaluate the antagonistic capacity of SARS-CoV-2 wild-type ORF6 constructs and three mutants (Gln51Glu, Gln56Glu, or both) that represent amino acid substitutions between SARS-CoV and SARS-CoV-2 protein 6 in the carboxy-terminal domain. FINDINGS: Overall, replication was higher for SARS-CoV in Vero E6 cells and for SARS-CoV-2 in Calu-3 cells. SARS-CoV-2 was reliant on TMPRSS2, found only in Calu-3 cells, for more efficient entry. SARS-CoV-2 was more sensitive to interferon treatment, less efficient in suppressing cytokine induction via IRF3 nuclear translocation, and permissive of a higher level of induction of interferon-stimulated genes MX1 and ISG56. SARS-CoV-2 ORF6 expressed in the context of a fully replicating SARS-CoV backbone suppressed MX1 gene induction, but this suppression was less efficient than that by SARS-CoV ORF6. Mutagenesis showed that charged amino acids in residues 51 and 56 shift the phenotype towards more efficient interferon antagonism, as seen in SARS-CoV. INTERPRETATION: SARS-CoV-2 ORF6 interferes less efficiently with human interferon induction and interferon signalling than SARS-CoV ORF6. Because of the homology of the genes, onward selection for fitness could involve functional optimisation of interferon antagonism. Charged amino acids at positions 51 and 56 in ORF6 should be monitored for potential adaptive changes. FUNDING: Bundesministerium für Bildung und Forschung, EU RECOVER project.


Subject(s)
COVID-19 Drug Treatment , Interferon Type I , Severe acute respiratory syndrome-related coronavirus , Amino Acids/genetics , Antiviral Agents/pharmacology , Humans , Interferon Type I/genetics , Reverse Genetics , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2/genetics , Viral Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...